Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Acta Physiologica Sinica ; (6): 732-740, 2019.
Article in Chinese | WPRIM | ID: wpr-777137

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by loss of dopaminergic (DA) neurons in the dense part of the substantia nigra (SNpc). Postmortem analysis of PD patients and experimental animal studies found that microglial cell activation and increased levels of pro-inflammatory factors were common features of PD brain tissue. At the same time, the invasion and accumulation of peripheric immune cells were detected in the brain of PD patients. In this paper, peripheral inflammation across the blood-brain barrier (BBB), the misfolded α-synuclein (α-syn)-induced microglial cell activation and intracerebral inflammation in PD are summarized, providing potential therapeutic measures for delaying the onset of PD.


Subject(s)
Animals , Humans , Blood-Brain Barrier , Dopaminergic Neurons , Pathology , Inflammation , Pathology , Microglia , Parkinson Disease , Pathology , Substantia Nigra , Pathology , alpha-Synuclein
2.
Neuroscience Bulletin ; (6): 438-448, 2018.
Article in English | WPRIM | ID: wpr-777052

ABSTRACT

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to study white and gray matter (GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging (TDI) is an image reconstruction method for dMRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI (stTDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct direction-encoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging (DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with stTDI, but not with DTI reconstructions from the same dMRI data. The possible mechanisms underlying the enhanced GM contrast are discussed.


Subject(s)
Animals , Male , Brain Mapping , Diffusion Tensor Imaging , Methods , Hippocampus , Diagnostic Imaging , Image Processing, Computer-Assisted , Methods , Neural Pathways , Diagnostic Imaging , Tupaiidae , Visual Cortex , Diagnostic Imaging
3.
Acta Physiologica Sinica ; (6): 146-158, 2017.
Article in English | WPRIM | ID: wpr-348289

ABSTRACT

Acute fetal hypoxia (AFH) can elicit postnatal motor deficits and cognitive impairments. To test whether lifelong acclimatization to middle altitude (MA) hypoxia has protective effects on the impairments caused by AFH, ICR mice bred at 1 900 m altitude for 6-7 generations were evaluated under AFH. On gestation day 9 (GD 9), 13 (GD 13) or 17 (GD 17), pregnant mice received a single exposure to acute hypoxia (7% O, 6 h). Physiological and neurodevelopmental behaviors, motor function (open field), spatial learning and memory (Morris water maze), and anxiety level (elevated plus maze) were examined in the offspring from neonate to adulthood. In the neonatal age, among all the physiological and behavioral landmarks, almost no differences were found in the hypoxia groups. In the juvenile period, no obvious impairments of motor function and anxiety level were found in the hypoxia groups. In the adult period, no obvious impairment of motor function was found in hypoxia groups; Interestingly, AFH groups' offspring showed normal or enhanced long-term spatial memory ability after AFH. These data suggest that AFH cause little abnormalities in the offspring of MA-adapted mice. To further investigate the underlying mechanisms, the neuronal numbers in behavior-related brain areas (accumbens nucleus, basal amygdala and hippocampus) were counted, and the physiological parameters of the blood were measured. The morphological data showed that no obvious neuronal necrosis was found in all hypoxia groups. In addition, blood tests showed that red blood corpuscle count, hemoglobin concentration and hematocrit levels in mice raised at MA were markedly higher in both males and females, compared with controls raised at the sea level. These data suggest that lifelong acclimatization to MA hypoxia has protective effects against development delay, motor deficits and spatial learning and memory impairments induced by AFH, and the protective effects may be due to higher hemoglobin concentration and hematocrit levels in the blood. The findings may provide a better understanding of fetal hypoxia and potential intervention treatments.

SELECTION OF CITATIONS
SEARCH DETAIL